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LETTER TO THE EDITOR 

Random and dendritic patterns in crack propagation 
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Abstract. The transition from random fractal structures to dendritic pattems in crack 
propagation in an elastic medium is shown to be a consequence of averaging out fluctuations, 
as already found for the growth of structures described by scalar fields (such as for 
diffusion-limited aggregation or dielectric breakdown). 

One of the most interesting topics in the physics of growing structures concerns the 
understanding of the conditions under which either random fractal structures 
(Mandelbrot 1983) or dendritic-like structures (Langer 1980) develop. In particular, 
the connection between tip-splitting phenomena and dendritic growth in diffusion- 
limited aggregation ( DLA) and dielectric breakdown ( DB), introduced by Witten and 
Sander (1983) and Niemeyer et al (1984) respectively, and viscous fingering, among 
others, has attracted a great deal of attention (Ben-Jacob et a1 1985, Sander et a1 1985, 
KertCsz and Vicsek 1986, Nittmann and Stanley 1986, Meakin 1987a, b). It has been 
found that the asymmetry in fluctuations promoted by the growth process is responsible 
for the tip splitting which leads to the random fractal structures characteristics of DLA 
and DB. Reduction of noise by Monte Carlo averaging has facilitated the description 
of a continuous transition from tip splitting (dominated by fluctuations) to dendritic 
growth. The picture which emerges from these investigations (see Meakin (1987b) for 
a review) is that fluctuations reduce the effect of the anisotropy, leading to the formation 
of fractal-like patterns. When fluctuations are averaged out, dendritic-like patterns 
grow, with a regular anisotropic structure. Closely related to this interesting subject is 
the question recently raised by several authors (Meakin 1985, Ball and Brady 1985, 
Kertisz and Vicsek 1986) concerning the anisotropy of aggregates grown on a lattice; 
according to these researchers, these aggregates are asymptotically not fractals because 
when their sizes are increased the anisotropy of the underlying lattice is gradually 
revealed. 

Those investigations have all been carried out on structures growing in scalar fields. 
In this letter we shall study the transition from random fractals to dendritic structures 
in the case of crack propagation in elastic media. It has been shown recently (Louis 
and Guinea 1987a, Termonia and Meakin 1986) that fracture patterns in elastic media 
may have a fractal geometry, in close relationship with DLA and DB. In this work it 
will be shown that a transition to dendritic structures also occurs in this case as a 
consequence of averaging out fluctuations. In the following, we shall briefly outline 
the features of the model proposed by Louis and Guinea (1987a), pertinent to the 
present problem. 
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We describe the elastic medium by a discrete lattice with nearest-neighbour central 
forces, namely 

H = $ C k , [ ( u , - u , )  * ?,]* (1) 
i.1 

where ui is the displacement vector at site i, f, is a unit vector between sites i and j’ 
and k, is the force constant. A triangular lattice is chosen in order to reproduce the 
correct isotropic properties in the continuum limit. In this case the equilibrium 
equations are 

where A and p are the two LamC coefficients, u ( r )  is the displacement field and d i  is 
the partial derivative with respect to the ith component of r. In the present work all 
force constants between lattice points are taken equal to unity; this case corresponds 
to a ratio between LamC coefficients A l p  = 1 (Louis and Guinea 1987a). 

Equation (2) is a generalisation of the Laplace equation which describes processes 
like DLA (Witten and Sander 1983), DB (Niemeyer et a1 1984) and viscous fingering 
in 2~ cells (Nittmann et a1 1985). The close relationship between those three non- 
equilibrium phenomena and the present one has been discussed previously by Louis 
and Guinea (1987a); the main difference consists in the vectorial nature of the field 
characteristic of the present problem. It can therefore be expected that, as already 
found for structures growing in scalar fields on a lattice, the anisotropy of the lattice 
be revealed for very large structures. In the present work we are concerned with rather 
small structures and therefore we only investigate the connection between anisotropy 
and fluctuations. 

In order to allow a crack to grow we must apply forces at the external boundaries 
of the medium to induce a finite distribution of stresses within it. We will consider 
the case of uniform dilation. We initiate the crack by making the force constant of a 
given bond on the lattice equal to zero. Then the nodes of the lattice are displaced to 
achieve equilibrium; the displacements of the nodes which lie at a rhombus far enough 
from the crack are kept fixed. The stresses accumulated in the bonds adjacent to the 
broken bond are then calculated. The ten next-nearest neighbours of the broken bond 
are considered as candidates for breaking. Other choices are possible such as four or 
six neighbours; nonetheless, although this may affect the characteristics of the pattern 
in the initial stages of the process (Meakin 1987c, Louis and Guinea 1987b), it is not 
yet clear whether it has any influence on rather large cracks containing many broken 
bonds. 

Noise reduction was accounted for, as previously done for structures growing in 
scalar fields (Meakin 1987a). From the set of candidates, a particular bond was picked 
with probability proportional to the absolute value of the stress, but only when it has 
been chosen a given number of times (s) is its force constant set equal to zero; s is a 
parameter which can be tuned. In order to differentiate more clearly between structures 
growing with different values of s from the very early stages of growth, we start by 
breaking all bonds contained in a hexagon of side 5 ;  this procedure has no influence 
on large structures. 

Figures 1-3 illustrate the kind of structures obtained for several values of the 
averaging parameter s, ranging from 1 to 1000. The early stages of growth are shown 
in figure 1. We note a very remarkable difference between the structures. For s = 1 
(figure l ( a ) )  we recover random fractal growth as already discussed by Louis and 
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Figure 1. Cracks containing around 550 broken bonds, propagating in an elastic medium 
with A = p. The crack was started by breaking all bonds in a hexagon of side 5. Structures 
grown with different degrees of averaging are shown: (a )  s = 1, random fractal, ( b )  s = 5 ;  
(c )  $ = I O ;  ( d )  s=80. 

Guinea (1987a). When s is increased tip splitting is reduced (figure l (b ) )  and nearly 
eliminated for s > 10 (figure l(c)) .  For a large value of the noise parameter, s = 80, 
the dendritic nature of the pattern is clearly visible (figure l (d) ) .  

Cracks containing over 1000 broken bonds are shown in figures 2 and 3. First we 
note that s = 5 represents too low a reduction of fluctuations to eliminate tip splitting 
(figure 2 ( a ) )  as already noted in smaller patterns. Here we should remark that the 
asymmetry of the patterns in figures 2 and 3 arises from the amplification of small 
initial fluctuations which cannot be avoided even in the large-s limit. Patterns showing 
a remarkable dendritic-like structure are already obtained for s = 20 (figure 2( b)). The 
crack shown in that figure has a distinguishable dendritic nature; tip splitting is very 
scarce. 

Finally we address a question recently raised by KertCsz and Vicsek (1986). Accord- 
ing to these authors, for very large averaging a second transition from dendritic 
structures to needle crystals takes place in DLA; they reported needle-like patterns for 
s around 400. In figure 3 we show cracks containing around 1600 broken bonds for 
s = 80 and 1000. It is remarkable that both structures are very similar and no indication 
of the transition to needle crystals is observed. Although we do not have any sound 
explanation for the discrepancy between our results and those of Kertisz and Vicsek, 
it is worth remarking on the vectorial nature of the fields in which our structures have 
been grown, in contrast with the scalar character of the field in DLA or DB. 
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Figure 2. Same as figure 1 for ( a )  s = 5  and around 1900 broken bonds; ( b ) s = 2 0  and 
around 1900 broken bonds. 

Figure 3. Same as figure 1 for ( a )  s = 80 and 1650 broken bonds; ( b )  s = 1000 and 1600 
broken bonds. 
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In this letter we have investigated the transition from random fractal structures to 
dendritic patterns in crack propagation. As previously found for DLA or DB, this was 
again found to be a consequence of fluctuations; for large fluctuations fractal structures 
grow but when averaging is introduced cracks tend to have a dendritic-like character 
instead. For very strong averaging no transition to needle crystals was found. 

The financial support of the Comision Asesora para la Investigacidn Cientifica y 
TCcnica (Spain) is gratefully acknowledged. 
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